*** Welcome to piglix ***

Risetime


In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog or digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used. For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. According to Orwiler (1969, p. 22), the term "rise time" applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time.

Rise time is an analog parameter of fundamental importance in high speed electronics, since it is a measure of the ability of a circuit to respond to fast input signals. Many efforts over the years have been made to reduce the rise times of generators, analog and digital circuits, measuring and data transmission equipment, focused on the research of faster electron devices and on techniques of reduction of stray circuit parameters (mainly capacitances and inductances). For applications outside the realm of high speed electronics, long (compared to the attainable state of the art) rise times are sometimes desirable: examples are the dimming of a light, where a longer rise-time results, amongst other things, in a longer life for the bulb, or in the control of analog signals by digital ones by means of an analog switch, where a longer rise time means lower capacitive feedthrough, and thus lower coupling noise to the controlled analog signal lines.


...
Wikipedia

...