*** Welcome to piglix ***

Ripple tank


In physics and engineering, a ripple tank is a shallow glass tank of water used in schools and colleges to demonstrate the basic properties of waves. It is a specialized form of a wave tank. The ripple tank is usually illuminated from above, so that the light shines through the water. Some small ripple tanks fit onto the top of an overhead projector, i.e. they are illuminated from below. The ripples on the water show up as shadows on the screen underneath the tank. All the basic properties of waves, including reflection, refraction, interference and diffraction, can be demonstrated.

Ripples may be generated by a piece of wood that is suspended above the tank on elastic bands so that it is just touching the surface. Screwed to wood is a motor that has an off centre weight attached to the axle. As the axle rotates the motor wobbles, shaking the wood and generating ripples.

A number of wave properties can be demonstrated with a ripple tank. These include plane waves, reflection, refraction, interference and diffraction.

When the rippler is attached with a point spherical ball and lowered so that it just touches the surface of the water, circular waves will be produced.

When the rippler is lowered so that it just touches the surface of the water, plane waves will be produced. (In the illustration, the brown rectangle is the rippler).

By placing a metal bar in the tank and tapping the wooden bar a pulse of three of four ripples can be sent towards the metal bar. The ripples reflect from the bar. If the bar is placed at an angle to the wavefront the reflected waves can be seen to obey the law of reflection. The angle of incidence and angle of reflection will be the same.

If a concave parabolic obstacle is used, a plane wave pulse will converge on a point after reflection. This point is the focal point of the mirror. Circular waves can be produced by dropping a single drop of water into the ripple tank. If this is done at the focal point of the "mirror" plane waves will be reflected back.


...
Wikipedia

...