Highway engineering is an engineering discipline branching from civil engineering that involves the planning, design, construction, operation, and maintenance of roads, bridges, and tunnels to ensure safe and effective transportation of people and goods. Highway engineering became prominent towards the latter half of the 20th Century after World War II. Standards of highway engineering are continuously being improved. Highway engineers must take into account future traffic flows, design of highway intersections/interchanges, geometric alignment and design, highway pavement materials and design, structural design of pavement thickness, and pavement maintenance.
The beginning of road construction could be dated to the time of the Romans. With the advancement of technology from carriages pulled by two horses to vehicles with power equivalent to 100 horses, road development had to follow suit. The construction of modern highways did not begin until the late 19th to early 20th century.
The first research dedicated to highway engineering was initiated in the United Kingdom with the introduction of the Transport Research Laboratory (TRL), in 1930. In the USA, highway engineering became an important discipline with the passing of the Federal-Aid Highway Act of 1944, which aimed to connect 90% of cities with a population of 50,000 or more. With constant stress from vehicles which grew larger as time passed, improvements to pavements were needed. With technology out of date, in 1958 the construction of the first motorway in Great Britain (the Preston bypass) played a major role in the development of new pavement technology.
Design policies standards used in the United States are typically based on publications of the American Association of State Highway and Transportation Officials as well as research promulgated by the Transportation Research Board, the Institute of Transportation Engineers, the Federal Highway Administration, and the Department of Transportation.