Reverse genetics is an approach to discover the function of a gene by analyzing the phenotypic effects of specific engineered gene sequences. This investigative process proceeds in the opposite direction of so-called forward genetic screens of classical genetics. Simply put, while forward genetics seeks to find the genetic basis of a phenotype or trait, reverse genetics seeks to find what phenotypes arise as a result of particular genetic sequences.
Automated DNA sequencing generates large volumes of genomic sequence data relatively rapidly. Many genetic sequences are discovered in advance of other, less easily obtained, biological information. Reverse genetics attempts to connect a given genetic sequence with specific effects on the organism.
To learn the influence a sequence has on phenotype, or to discover its biological function, researchers can engineer a change or disruption in the DNA. After this change has been made a researcher can look for the effect of such alterations in the whole organism. There are several different methods of reverse genetics that have proved useful:
Site-directed mutagenesis is a sophisticated technique that can either change regulatory regions in the promoter of a gene or make subtle codon changes in the open reading frame to identify important amino residues for protein function.
Alternatively, the technique can be used to create null alleles so that the gene is not functional. For example, deletion of a gene by gene targeting (gene knockout) can be done in some organisms, such as yeast, mice and moss. Unique among plants, in Physcomitrella patens, gene knockout via homologous recombination to create knockout moss (see figure) is nearly as efficient as in yeast. In the case of the yeast model system directed deletions have been created in every non-essential gene in the yeast genome. In the case of the plant model system huge mutant libraries have been created based on gene disruption constructs. In gene knock-in, the endogenous exon is replaced by an altered sequence of interest.