The term niche differentiation (synonymous with niche segregation, niche separation and niche partitioning), as it applies to the field of ecology, refers to the process by which competing species use the environment differently in a way that helps them to coexist. The competitive exclusion principle states that if two species with identical niches (i.e., ecological roles) compete, then one will inevitably drive the other to extinction. When two species differentiate their niches, they tend to compete less strongly, and are thus more likely to coexist. Species can differentiate their niches in many ways, such as by consuming different foods, or using different parts of the environment.
As an example of niche partitioning, several Anolis lizards in the Caribbean islands share common food needs—mainly insects. They avoid competition by occupying different physical locations. For example, some live on the leaf litter floor while others live on branches. Species who live in different areas compete less for food and other resources, which minimizes competition between species. However, species who live in similar areas compete strongly.
The Lotka-Volterra equation states that two competing species can coexist when intra-specific (within species) competition is greater than inter-specific (between species) competition (Armstrong and McGehee 1981). Since niche differentiation concentrates competition within-species, due to a decrease in between-species competition, the Lotka-Volterra model predicts that niche differentiation of any degree will result in coexistence.
In reality, this still leaves the question of how much differentiation is needed for coexistence (Hutchinson 1959). A vague answer to this question is that the more similar two species are, the more finely balanced the suitability of their environment must be in order to allow coexistence. There are limits to the amount of niche differentiation required for coexistence, and this can vary with the type of resource, the nature of the environment, and the amount of variation both within and between the species.
To answer questions about niche differentiation, it is necessary for ecologists to be able to detect, measure, and quantify the niches of different coexisting and competing species. This is often done through a combination of detailed natural history studies, controlled experiments (to determine the strength of competition), and mathematical models (Strong 1982, Leibold 1995). To understand the mechanisms of niche differentiation and competition, much data must be gathered on how the two species interact, how they use their resources, and the type of ecosystem in which they exist, among other factors. In addition, several mathematical models exist to quantify niche breadth, competition, and coexistence (Bastolla et al. 2005). However, regardless of methods used, niches and competition can be distinctly difficult to measure quantitatively, and this makes detection and demonstration of niche differentiation difficult and complex.