*** Welcome to piglix ***

Reproducing kernel Hilbert space


In functional analysis (a branch of mathematics), a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions f and g in the RKHS are close in norm, i.e., ‖f-g‖ is small, then f and g are also pointwise close, i.e., |f(x)-g(x)| is small for all x. The reverse need not be true. It is not entirely straightforward to construct a Hilbert space of functions which is not an RKHS. Note that L2 spaces are not Hilbert spaces of functions (and hence not RKHSs), but rather Hilbert spaces of equivalence classes of functions (for example, the functions f and g defined by f(x)=0 and g(x)=1 are equivalent in L2). However, there are RKHSs in which the norm is an L2-norm, such as the space of band-limited functions (see the example below). An RKHS is associated with a kernel that reproduces every function in the space in the sense that for any in the set on which the functions are defined, "evaluation at " can be performed by taking an inner product with a function determined by the kernel. Such a reproducing kernel exists if and only if every evaluation functional is continuous.


...
Wikipedia

...