Asexual reproduction is a type of reproduction by which offspring arise from a single organism, and inherit the genes of that parent only; it does not involve the fusion of gametes, and almost never changes the number of chromosomes. Asexual reproduction is the primary form of reproduction for single-celled organisms such as the Archaea and bacteria. Many plants and fungi reproduce asexually as well.
While all prokaryotes reproduce asexually (without the formation and fusion of gametes), mechanisms for lateral gene transfer such as conjugation, transformation and transduction are sometimes likened to sexual reproduction or at least with sex, in the sense of genetic recombination in meiosis. Current hypotheses suggest that asexual reproduction may have benefits when rapid population growth is important or in stable environments, while sexual reproduction offers a net advantage by allowing more rapid generation of genetic diversity allowing adaptation to changing environments. Developmental constraints may underlie why few animals have relinquished sexual reproduction completely in their life-cycles. This does not involve fertilization. Another constraint on switching from sexual to asexual reproduction would be the concomitant loss of meiosis and the protective recombinational repair of DNA damage afforded as one function of meiosis.
An important form of fission is binary fission. In binary fission, the parent organism is replaced by two daughter organisms, because it literally divides in two. Only prokaryotes (the archaea and the bacteria) reproduce asexually through binary fission. Eukaryotes (such as protists and unicellular fungi) may reproduce in a functionally similar manner by mitosis; most of these are also capable of sexual reproduction.