Replication stress is defined as the events that take place when the genome is exposed to various stresses. It typically occurs during DNA replication, and can result in a stalled replication fork.ATM and ATR are proteins that mediate replication stress. Specifically, they are kinases that are recruited and activated by DNA damage. The stalled replication fork can collapse if these regulatory proteins fail to stabilize it. When this occurs, reassembly of the fork is initiated in order to repair the damaged DNA end.
The replication fork consists of a group of proteins that influence the activity of DNA replication. In order for the replication fork to stall, the cell must possess a certain number of stalled forks and arrest length. The replication fork is specifically paused due to the stalling of helicase and polymerase activity, which are linked together. In this situation, the fork protection complex (FPC) is recruited to help maintain this linkage.
In addition to stalling and maintaining the fork structure, protein phosphorylation can also create a signal cascade for replication restart. The protein Mrc1, which is part of the FPC, transmits the checkpoint signal by interacting with kinases throughout the cascade. When there is a loss of these kinases (from replication stress), an excess of ssDNA is produced, which is necessary for the restarting of replication.
Replication stress is induced from various endogenous and exogenous stresses, which are regularly introduced to the genome. These stresses include, but are not limited to, DNA damage, excessive compacting of chromatin (preventing replisome access), over-expression of oncogenes, or difficult-to-replicate genome structures. Replication stress can lead to genome instability, cancer, and ageing.