A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings. Torque is generated through the phenomenon of magnetic reluctance.
There are various types of reluctance motors:
Reluctance motors can deliver very high power density at low cost, making them ideal for many applications. Disadvantages are high torque ripple (the difference between maximum and minimum torque during one revolution) when operated at low speed, and noise caused by torque ripple. Until the early twenty-first century their use was limited by the complexity of designing and controlling them. These challenges are being overcome by advances in the theory, by the use of sophisticated computer design tools, and by the use of low-cost embedded systems for control, typically based on microcontrollers using control algorithms and real-time computing to tailor drive waveforms according to rotor position and current or voltage feedback. Before the development of large-scale integrated circuits the control electronics would have been prohibitively costly.
The stator consists of multiple projecting (salient) electromagnet poles, similar to a wound field brushed DC motor. The rotor consists of soft magnetic material, such as laminated silicon steel, which has multiple projections acting as salient magnetic poles through magnetic reluctance. For switched reluctance motors, the number of rotor poles is typically less than the number of stator poles, which minimizes torque ripple and prevents the poles from all aligning simultaneously—a position which cannot generate torque.
When a rotor pole is equidistant from the two adjacent stator poles, the rotor pole is said to be in the "fully unaligned position". This is the position of maximum magnetic reluctance for the rotor pole. In the "aligned position", two (or more) rotor poles are fully aligned with two (or more) stator poles, (which means the rotor poles completely face the stator poles) and is a position of minimum reluctance.