Reliability in statistics and psychometrics is the overall consistency of a measure. A measure is said to have a high reliability if it produces similar results under consistent conditions. "It is the characteristic of a set of test scores that relates to the amount of random error from the measurement process that might be embedded in the scores. Scores that are highly reliable are accurate, reproducible, and consistent from one testing occasion to another. That is, if the testing process were repeated with a group of test takers, essentially the same results would be obtained. Various kinds of reliability coefficients, with values ranging between 0.00 (much error) and 1.00 (no error), are usually used to indicate the amount of error in the scores." For example, measurements of people's height and weight are often extremely reliable.
There are several general classes of reliability estimates:
Reliability does not imply validity. That is, a reliable measure that is measuring something consistently is not necessarily measuring what you want to be measuring. For example, while there are many reliable tests of specific abilities, not all of them would be valid for predicting, say, job performance.
While reliability does not imply validity, reliability does place a limit on the overall validity of a test. A test that is not perfectly reliable cannot be perfectly valid, either as a means of measuring attributes of a person or as a means of predicting scores on a criterion. While a reliable test may provide useful valid information, a test that is not reliable cannot possibly be valid.
For example, if a set of weighing scales consistently measured the weight of an object as 500 grams over the true weight, then the scale would be very reliable, but it would not be valid (as the returned weight is not the true weight). For the scale to be valid, it should return the true weight of an object. This example demonstrates that a perfectly reliable measure is not necessarily valid, but that a valid measure necessarily must be reliable.
In practice, testing measures are never perfectly consistent. Theories of test reliability have been developed to estimate the effects of inconsistency on the accuracy of measurement. The basic starting point for almost all theories of test reliability is the idea that test scores reflect the influence of two sorts of factors:
1. Factors that contribute to consistency: stable characteristics of the individual or the attribute that one is trying to measure