Reliability-centered maintenance (RCM) is a process to ensure that systems continue to do what their users require in their present operating context. It is generally used to achieve improvements in fields such as the establishment of safe minimum levels of maintenance. Successful implementation of RCM will lead to increase in cost effectiveness, reliability, machine uptime, and a greater understanding of the level of risk that the organization is managing. It is defined by the technical standard SAE JA1011, Evaluation Criteria for RCM Processes.(Article 5277)
It is generally used to achieve improvements in fields such as the establishment of safe minimum levels of maintenance, changes to operating procedures and strategies and the establishment of capital maintenance regimes and plans. Successful implementation of RCM will lead to increase in cost effectiveness, machine uptime, and a greater understanding of the level of risk that the organization is managing.
The late John Moubray, in his book RCM2 characterized reliability-centered maintenance as a process to establish the safe minimum levels of maintenance. This description echoed statements in the Nowlan and Heap report from United Airlines.
It is defined by the technical standard SAE JA1011, Evaluation Criteria for RCM Processes, which sets out the minimum criteria that any process should meet before it can be called RCM. This starts with the seven questions below, worked through in the order that they are listed:
Reliability centered maintenance is an engineering framework that enables the definition of a complete maintenance regimen. It regards maintenance as the means to maintain the functions a user may require of machinery in a defined operating context. As a discipline it enables machinery stakeholders to monitor, assess, predict and generally understand the working of their physical assets. This is embodied in the initial part of the RCM process which is to identify the operating context of the machinery, and write a Failure Mode Effects and Criticality Analysis (FMECA). The second part of the analysis is to apply the "RCM logic", which helps determine the appropriate maintenance tasks for the identified failure modes in the FMECA. Once the logic is complete for all elements in the FMECA, the resulting list of maintenance is "packaged", so that the periodicities of the tasks are rationalised to be called up in work packages; it is important not to destroy the applicability of maintenance in this phase. Lastly, RCM is kept live throughout the "in-service" life of machinery, where the effectiveness of the maintenance is kept under constant review and adjusted in light of the experience gained.
RCM can be used to create a cost-effective maintenance strategy to address dominant causes of equipment failure. It is a systematic approach to defining a routine maintenance program composed of cost-effective tasks that preserve important functions.