*** Welcome to piglix ***

Relativistic effect


Relativistic quantum chemistry invokes quantum chemical and relativistic mechanical arguments to explain elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example of such an explanation is the color of gold; due to relativistic effects, it is not silvery like most other metals.

The term "relativistic effects" was developed in light of the history of quantum mechanics. Initially quantum mechanics was developed without considering the theory of relativity. By convention, "relativistic effects" are those discrepancies between values calculated by models considering and not considering relativity. Relativistic effects are important for the heavier elements with high atomic numbers. In the most common layout of the periodic table, these elements are shown in the lower area. Examples are the lanthanides and actinides.

Relativistic effects in chemistry can be considered to be perturbations, or small corrections, to the non-relativistic theory of chemistry, which is developed from the solutions of the Schrödinger equation. These corrections affect the electrons differently depending on the electron speed relative to the speed of light. Relativistic effects are more prominent in heavy elements because only in these elements do electrons attain more pronounced relativistic speeds.

Beginning in 1935, Bertha Swirles described a relativistic treatment of a many-electron system, in spite of Paul Dirac's 1929 assertion that the only imperfections remaining in quantum mechanics "...give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions in which it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass and velocity and assumes only Coulomb forces between the various electrons and atomic nuclei."


...
Wikipedia

...