In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein-Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M.
The metric was discovered by Hans Reissner and Gunnar Nordström.
In spherical coordinates (t, r, θ, φ), the line element for the Reissner–Nordström metric is
where c is the speed of light, t is the time coordinate (measured by a stationary clock at infinity), r is the radial coordinate, is a 2-sphere defined by
rS is the Schwarzschild radius of the body given by
and rQ is a characteristic length scale given by
Here 1/4πε0 is Coulomb force constant.
In the limit that the charge Q (or equivalently, the length-scale rQ) goes to zero, one recovers the Schwarzschild metric. The classical Newtonian theory of gravity may then be recovered in the limit as the ratio rS/r goes to zero. In that limit that both rQ/r and rS/r go to zero, the metric becomes the Minkowski metric for special relativity.