*** Welcome to piglix ***

Register file


A register file is an array of processor registers in a central processing unit (CPU). Modern integrated circuit-based register files are usually implemented by way of fast static RAMs with multiple ports. Such RAMs are distinguished by having dedicated read and write ports, whereas ordinary multiported SRAMs will usually read and write through the same ports.

The instruction set architecture of a CPU will almost always define a set of registers which are used to stage data between memory and the functional units on the chip. In simpler CPUs, these architectural registers correspond one-for-one to the entries in a physical register file within the CPU. More complicated CPUs use register renaming, so that the mapping of which physical entry stores a particular architectural register changes dynamically during execution. The register file is part of the architecture and visible to the programmer, as opposed to the concept of transparent caches.

Register files may be clubbed together as register banks. Some processors have several register banks.

ARM processors use ARM register banks for fast interrupt request. x86 processors use context switching and fast interrupt for switching between instruction, decoder, GPRs and register files, if there is more than one, before the instruction is issued, but this is only existing on processors that support superscalar. However, context switching is a totally different mechanism to ARM's register bank within the registers.

The MODCOMP and the later 8051-compatible processors use bits in the program status word to select the currently active register bank.

The usual layout convention is that a simple array is read out vertically. That is, a single word line, which runs horizontally, causes a row of bit cells to put their data on bit lines, which run vertically. Sense amps, which convert low-swing read bitlines into full-swing logic levels, are usually at the bottom (by convention). Larger register files are then sometimes constructed by tiling mirrored and rotated simple arrays.


...
Wikipedia

...