*** Welcome to piglix ***

Reference electrode


A reference electrode is an electrode which has a stable and well-known electrode potential. The high stability of the electrode potential is usually reached by employing a redox system with constant (buffered or saturated) concentrations of each participants of the redox reaction.

There are many ways reference electrodes are used. The simplest is when the reference electrode is used as a half cell to build an electrochemical cell. This allows the potential of the other half cell to be determined. An accurate and practical method to measure an electrode's potential in isolation (absolute electrode potential) has yet to be developed.

Common reference electrodes and potential with respect to the standard hydrogen electrode:

Standard Hydrogen Electrode

Cu-Cu(II) reference electrode

Ag-AgCl reference electrode

While it is convenient to compare between solvents to qualitatively compare systems it is not quantitatively meaningful. Much as pKa are related between solvents, but not the same, so is the case with E°. While the SHE might seem to be a reasonable reference for nonaqueous work as it turns out the platinum is rapidly poisoned by many solvents including acetonitrile causing uncontrolled drifts in potential. Both the SCE and saturated Ag/AgCl are aqueous electrodes based around saturated aqueous solution. While for short periods it may be possible to use such aqueous electrodes as references with nonaqueous solutions the long-term results are not trustworthy. Using aqueous electrodes introduces undefined, variable, and unmeasurable junction potentials to the cell in the form of a liquid-liquid junction as well as different ionic composition between the reference compartment and the rest of the cell. The best argument against using aqueous reference electrodes with nonaqueous systems, as mentioned earlier, is that potentials measured in different solvents are not directly comparable. For instance, the potential for the Fc0/+ couple is sensitive to solvent.

A Quasi-Reference Electrode (QRE) avoids the issues mentioned above. A QRE with ferrocene or another internal standard, such as or decamethylferrocene, referenced back to ferrocene is ideal for nonaqueous work. Since the early 1960s ferrocene has been gaining acceptance as the standard reference for nonaqueous work for a number of reasons, and in 1984, IUPAC recommended ferrocene (II/III) as a standard redox couple. The preparation of the QRE electrode is simple, allowing for a fresh reference to be prepared with each set of experiments. Since QREs are made fresh, there is also no concern with improper storage or maintenance of the electrode. QREs are also more affordable than other reference electrodes.


...
Wikipedia

...