In quantum mechanics, especially in the study of open quantum systems, reduced dynamics refers to the time evolution of a density matrix for a system coupled to an environment. Consider a system and environment initially in the state (which in general may be entangled) and undergoing unitary evolution given by . Then the reduced dynamics of the system alone is simply
If we assume that the mapping is linear and completely positive, then the reduced dynamics can be represented by a quantum operation. This mean we can express it in the operator-sum form