In computer programming languages, a recursive data type (also known as a recursively-defined, inductively-defined or inductive data type) is a data type for values that may contain other values of the same type. Data of recursive types are usually viewed as directed graphs.
An important application of recursion in computer science is in defining dynamic data structures such as Lists and Trees. Recursive data structures can dynamically grow to a theoretically infinite size in response to runtime requirements; in contrast, a static array's size requirements must be set at compile time.
Sometimes the term "inductive data type" is used for algebraic data types which are not necessarily recursive.
An example is the list type, in Haskell:
This indicates that a list of a's is either an empty list or a cons cell containing an 'a' (the "head" of the list) and another list (the "tail").
Another example is a similar singly linked type in Java:
This indicates that non-empty list of type E contains a data member of type E, and a reference to another List object for the rest of the list (or a null reference to indicate an empty rest of the list).
Data types can also be defined by mutual recursion. The most important basic example of this is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically:
A forest f consists of a list of trees, while a tree t consists of a pair of a value v and a forest f (its children). This definition is elegant and easy to work with abstractly (such as when proving theorems about properties of trees), as it expresses a tree in simple terms: a list of one type, and a pair of two types.
This mutually recursive definition can be converted to a singly recursive definition by inlining the definition of a forest:
A tree t consists of a pair of a value v and a list of trees (its children). This definition is more compact, but somewhat messier: a tree consists of a pair of one type and a list another, which require disentangling to prove results about.
In Standard ML, the tree and forest data types can be mutually recursively defined as follows, allowing empty trees: