In computer science, more precisely in automata theory, a recognizable set of a monoid is a subset that can be distinguished by some morphism to a finite monoid. Recognizable sets are useful in automata theory, formal languages and algebra.
This notion is different from the notion of recognizable language. Indeed, the term "recognizable" has a different meaning in computability theory.
Let be a monoid, a subset is recognized by a monoid if there exists a morphism from to such that , and recognizable if it is recognized by some finite monoid. This means that there exists a subset of (not necessarily a submonoid of ) such that the image of is in and the image of is in .