*** Welcome to piglix ***

Receptor antagonists


A receptor antagonist is a type of receptor ligand or drug that blocks or dampens agonist-mediated responses rather than provoking a biological response itself upon binding to a receptor. They are sometimes called blockers; examples include alpha blockers, beta blockers, and calcium channel blockers. In pharmacology, antagonists have affinity but no efficacy for their cognate receptors, and binding will disrupt the interaction and inhibit the function of an agonist or inverse agonist at receptors. Antagonists mediate their effects by binding to the active orthosteric (= right place) site or to allosteric (= other place) sites on receptors, or they may interact at unique binding sites not normally involved in the biological regulation of the receptor's activity. Antagonist activity may be reversible or irreversible depending on the longevity of the antagonist–receptor complex, which, in turn, depends on the nature of antagonist–receptor binding. The majority of drug antagonists achieve their potency by competing with endogenous ligands or substrates at structurally defined binding sites on receptors.

Biochemical receptors are large protein molecules that can be activated by the binding of a ligand (such as a hormone or drug). Receptors can be membrane-bound, occurring on the cell membrane, or intracellular, such as on the nucleus or . Binding occurs as a result of noncovalent interaction between the receptor and its ligand, at locations called the binding site on the receptor. A receptor may contain one or more binding sites for different ligands. Binding to the active site on the receptor regulates receptor activation directly. The activity of receptors can also be regulated by the binding of a ligand to other sites on the receptor, as in allosteric binding sites. Antagonists mediate their effects through receptor interactions by preventing agonist-induced responses. This may be accomplished by binding to the active site or the allosteric site. In addition, antagonists may interact at unique binding sites not normally involved in the biological regulation of the receptor's activity to exert their effects.


...
Wikipedia

...