In conservation and energy economics, the rebound effect (or take-back effect, RE) is the reduction in expected gains from new technologies that increase the efficiency of resource use, because of behavioral or other systemic responses. These responses usually tend to offset the beneficial effects of the new technology or other measures taken. While the literature on the rebound effect generally focuses on the effect of technological improvements on energy consumption, the theory can also be applied to the use of any natural resource or other input, such as labor. The rebound effect is generally expressed as a ratio of the lost benefit compared to the expected environmental benefit when holding consumption constant.
For instance, if a 5% improvement in vehicle fuel efficiency results in only a 2% drop in fuel use, there is a 60% rebound effect (since (5-2)⁄5 = 60%). The 'missing' 3% might have been consumed by driving faster or further than before.
The existence of the rebound effect is uncontroversial. However, debate continues as to the magnitude and impact of the effect in real world situations. Depending on the magnitude of the rebound effect, there are five different rebound effect types:
In order to avoid the rebound effect, environmental economists have suggested that any cost savings from efficiency gains be taxed in order to keep the cost of use the same.
The rebound effect was first described by William Stanley Jevons in his 1865 book The Coal Question, where he observed that the invention in Britain of a more efficient steam engine meant that the use of coal became economically viable for many new uses. This ultimately led to increased coal demand and much increased coal consumption, even as the amount of coal required for any particular use fell. According to Jevons, "It is a confusion of ideas to suppose that the economical use of fuel is equivalent to diminished consumption. The very contrary is the truth."
However, most contemporary authors credit Daniel Khazzoom for the re-emergence of the rebound effect in the research literature. Although Khazzoom did not use the term, he raised the idea that there is a less than one-to-one correlation between gains in energy efficiency and reductions in energy use, because of a change in the 'price content' of energy in the provision of the final consumer product. His study was based on energy efficiency gains in home appliances, but the principle applies throughout the economy. A commonly studied example is that of a more fuel-efficient car. As each kilometre of travel becomes cheaper, there will be an increase in driving speed and/or kilometres driven, as long as the price elasticity of demand for car travel is not zero. Other examples might include the growth in garden lighting after the introduction of energy-saving compact fluorescent lamps or the increasing size of houses driven partly by higher fuel efficiency in home heating technologies. If the rebound effect is larger than 100%, all gains from the increased fuel efficiency would be wiped out by increases in demand (the Jevons paradox).