*** Welcome to piglix ***

Realtime database


A real-time database is a database system which uses real-time processing to handle workloads whose state is constantly changing. This differs from traditional databases containing persistent data, mostly unaffected by time. For example, a stock market changes very rapidly and is dynamic. The graphs of the different markets appear to be very unstable and yet a database has to keep track of current values for all of the markets of . Real-time processing means that a transaction is processed fast enough for the result to come back and be acted on right away. Real-time databases are useful for accounting, banking, law, medical records, multi-media, process control, reservation systems, and scientific data analysis.

Real-time databases are traditional databases that use an extension to give the additional power to yield reliable responses. They use timing constraints that represent a certain range of values for which the data are valid. This range is called temporal validity. A conventional database cannot work under these circumstances because the inconsistencies between the real world objects and the data that represents them are too severe for simple modifications. An effective system needs to be able to handle time-sensitive queries, return only temporally valid data, and support priority scheduling. To enter the data in the records, often a sensor or an input device monitors the state of the physical system and updates the database with new information to reflect the physical system more accurately. When designing a real-time database system, one should consider how to represent valid time, how facts are associated with real-time system. Also, consider how to represent attribute values in the database so that process transactions and data consistency have no violations.

When designing a system, it is important to consider what the system should do when deadlines are not met. For example, an air-traffic control system constantly monitors hundreds of aircraft and makes decisions about incoming flight paths and determines the order in which aircraft should land based on data such as fuel, altitude, and speed. If any of this information is late, the result could be devastating. To address issues of obsolete data, the timestamp can support transactions by providing clear time references.

Although the real-time database system may seem like a simple system, problems arise during overload when two or more database transactions require access to the same portion of the database. A transaction is usually the result of an execution of a program that accesses or changes the contents of a database. A transaction is different from a stream because a stream only allows read-only operations, and transactions can do both read and write operations. This means in a stream, multiple users can read from the same piece of data, but they cannot both modify it. A database must let only one transaction operate at a time to preserve data consistency. For example, if two students demand to take the remaining spot for a section of a class and they hit submit at the same time, only one student should be able to register for it.


...
Wikipedia

...