In computer science, the readers-writers problems are examples of a common computing problem in concurrency. There are at least three variations of the problems, which deal with situations in which many threads try to access the same shared resource at one time. Some threads may read and some may write, with the constraint that no process may access the shared resource for either reading or writing while another process is in the act of writing to it. (In particular, it is allowed for two or more readers to access the share at the same time.) A readers-writer lock is a data structure that solves one or more of the readers-writers problems.
The basic reader-writers problem was first formulated and solved by Courtois et al.
Suppose we have a shared memory area with the basic constraints detailed above. It is possible to protect the shared data behind a mutual exclusion mutex, in which case no two threads can access the data at the same time. However, this solution is suboptimal, because it is possible that a reader R1 might have the lock, and then another reader R2 requests access. It would be foolish for R2 to wait until R1 was done before starting its own read operation; instead, R2. This is the motivation for the first readers-writers problem, in which the constraint is added that no reader shall be kept waiting if the share is currently opened for reading. This is also called readers-preference, with its solution:
In this solution of the readers/writers problem, the first reader must lock the resource (shared file) if such is available. Once the file is locked from writers, it may be used by many subsequent readers without having them to re-lock it again.
Before entering the critical section, every new reader must go through the entry section. However, there may only be a single reader in the entry section at a time. This is done to avoid race conditions on the readers (e.g. two readers increment the readcount at the same time, and both try to lock the resource, causing one reader to block). To accomplish this, every reader which enters the <ENTRY Section> will lock the <ENTRY Section> for themselves until they are done with it. At this point the readers are not locking the resource. They are only locking the entry section so no other reader can enter it while they are in it. Once the reader is done executing the entry section, it will unlock it by signalling the mutex. Signalling it is equivalent to: mutex.V() in the above code. Same is valid for the <EXIT Section>. There can be no more than a single reader in the exit section at a time, therefore, every reader must claim and lock the Exit section for themselves before using it.