Working mass, also referred to as reaction mass, is a mass against which a system operates in order to produce acceleration. In the case of a rocket, for example, the reaction mass is the fuel shot backwards to provide propulsion. All acceleration requires an exchange of momentum, which can be thought of as the "unit of movement". Momentum is related to mass and velocity, as given by the formula P = mv, where P is the momentum, m the mass, and v the velocity. The velocity of a body is easily changeable, but in most cases the mass is not, which makes it important.
In rockets, the total velocity change can be calculated (using the Tsiolkovsky rocket equation) as follows:
Where:
The term working mass is used primarily in the aerospace field. In more "down to earth" examples the working mass is typically provided by the Earth, which contains so much momentum in comparison to most vehicles that the amount it gains or loses can be ignored. However, in the case of an aircraft the working mass is the air, and in the case of a rocket, it is the rocket fuel itself. Most rocket engines use light-weight fuels (liquid hydrogen, oxygen, or kerosene) accelerated to super-sonic speeds. However, ion engines often use heavier elements like xenon as the reaction mass, accelerated to much higher speeds using electric fields.