*** Welcome to piglix ***

Reaction center

Bacterial photosynthetic reaction center
Reactprotdatbnkt.JPG
Bacterial photosynthetic reaction center
Identifiers
Symbol Photo_RC
Pfam PF00124
InterPro IPR000484
PROSITE PDOC00217
SCOP 1prc
SUPERFAMILY 1prc
TCDB 3.E.2

A photosynthetic reaction centre is a complex of several proteins, pigments and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from sunlight or transferred as excitation energy via light-harvesting antenna systems, give rise to electron transfer reactions along the path of a series of protein-bound co-factors. These co-factors are light-absorbing molecules (also named chromophores or pigments) such as chlorophyll and phaeophytin, as well as quinones. The energy of the photon is used to excite an electron of a pigment. The free energy created is then used to reduce a chain of nearby electron acceptors, which have subsequently higher redox-potentials. These electron transfer steps are the initial phase of a series of energy conversion reactions, ultimately resulting in the conversion of the energy of photons to the storage of that energy by the production of chemical bonds.

Reaction centers are present in all green plants, algae, and many bacteria. Although these species are separated by billions of years of evolution, the reaction centers are homologous for all photosynthetic species. In contrast, a large variety in light-harvesting complexes exist between the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as photosystem I P700 and photosystem II P680. The structures of these supercomplexes are large, involving multiple light-harvesting complexes. The reaction center found in Rhodopseudomonas bacteria is currently best understood, since it was the first reaction center of known structure and has fewer polypeptide chains than the examples in green plants.


...
Wikipedia

...