*** Welcome to piglix ***

Rank correlation


In statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test.

If, for example, one variable is the identity of a college basketball program and another variable is the identity of a college football program, one could test for a relationship between the poll rankings of the two types of program: do colleges with a higher-ranked basketball program tend to have a higher-ranked football program? A rank correlation coefficient can measure that relationship, and the measure of significance of the rank correlation coefficient can show whether the measured relationship is small enough to likely be a coincidence.

If there is only one variable, the identity of a college football program, but it is subject to two different poll rankings (say, one by coaches and one by sportswriters), then the similarity of the two different polls' rankings can be measured with a rank correlation coefficient.

As another example, in a contingency table with low income, medium income, and high income in the row variable and educational level—no high school, high school, university—in the column variable), a rank correlation measures the relationship between income and educational level.

Some of the more popular rank correlation statistics include

An increasing rank correlation coefficient implies increasing agreement between rankings. The coefficient is inside the interval [−1, 1] and assumes the value:

Following Diaconis (1988), a ranking can be seen as a permutation of a set of objects. Thus we can look at observed rankings as data obtained when the sample space is (identified with) a symmetric group. We can then introduce a metric, making the symmetric group into a metric space. Different metrics will correspond to different rank correlations.


...
Wikipedia

...