Ranger 3
|
|
Mission type | Lunar impactor |
---|---|
Operator | NASA |
Harvard designation | 1962 Alpha 1 |
COSPAR ID | 1962-001A |
SATCAT № | 221 |
Mission duration | 2 days |
Spacecraft properties | |
Manufacturer | Jet Propulsion Laboratory |
Launch mass | 329.8 kilograms (727 lb) |
Power | 150 W |
Start of mission | |
Launch date | January 26, 1962, 20:30:00 | UTC
Rocket | Atlas LV-3B Agena-B |
Launch site | Cape Canaveral LC-12 |
Orbital parameters | |
Reference system | Heliocentric |
Perihelion | 1,163 AU |
Apohelion | 0,9839 AU |
Inclination | 0.398° |
Lunar flyby (failed impact) | |
Closest approach | 28 January 1962 |
Distance | 36,874 kilometers (22,912 mi) |
Ranger 3 was a space exploration mission conducted by NASA to study the Moon. The Ranger 3 robotic spacecraft was launched January 26, 1962 as part of the Ranger program. Due to a series of malfunctions, the spacecraft missed the Moon by 22,000 mi (35,000 km) and entered a heliocentric orbit.
The Ranger 3 space probe was designed to transmit pictures of the lunar surface during a period of 10 minutes of flight prior to impacting on the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft.
Ranger 3 was the first of the Block II Ranger designs. The basic vehicle was 3.1 m high and consisted of a lunar capsule covered with a balsa wood impact-limiter, 650 mm in diameter, a mono-propellant mid-course motor, a retrorocket with a thrust of 5080 pounds force (22.6 kN), and a gold- and chrome-plated hexagonal base 1.5 m in diameter. A large high-gain dish antenna was attached to the base. Two wing-like solar panels (5.2 m across) were attached to the base and deployed early in the flight. Power was generated by 8680 solar cells contained in the solar panels which charged an 11.5 kg 1 kW·h capacity AgZn launching and backup battery. Spacecraft control was provided by a solid-state computer and sequencer and an earth-controlled command system. Attitude control was provided by Sun and Earth sensors, gyroscopes, and pitch and roll jets. The telemetry system aboard the spacecraft consisted of two 960 MHz transmitters, one at 3 W power output and the other at 50 mW power output, the high-gain antenna, and an omnidirectional antenna. White paint, gold and chrome plating, and a silvered plastic sheet encasing the retrorocket furnished thermal control.
During prelaunch preparations for Ranger 1, the spacecraft's timer had accidentally been started which led to the deployment of the solar panels inside the payload shroud. It was decided that ground testing of the onboard instruments would not be done on the Block II spacecraft because they had a functional midcourse correction engine and if a similar incident happened with them, the squibs and pyrotechnics used to deploy the solar panels could inadvertently ignite the propellants in the onboard engine, which could result in the explosion of the spacecraft on the pad and possibly take the entire launch vehicle with it. JPL officials announced that factory testing of the Ranger's systems was sufficient to root out any problems and any hardware which failed to pass the tests was not fit to fly.