*** Welcome to piglix ***

Range extender (vehicle)


A range extender vehicle is a battery electric vehicle that includes an auxiliary power unit (APU) known as a 'range extender'. The range extender drives an electric generator which charges a battery which supplies the vehicle's electric motor with electricity. This arrangement is known as a series hybrid drivetrain. The most commonly used range extenders are internal combustion engines, but fuel-cells or other engine types can be used.

The key function of the range extender is to increase the vehicle's range. Range autonomy is one of the main barriers for the commercial success of electric vehicles, and extending the vehicle's range when the battery is depleted helps alleviate range anxiety.

A range extending vehicle design can also reduce the consumption of the range extending fuel (such as gasoline) by using the primary fuel (such as battery power), while still maintaining the driving range of a single fuel vehicle powered by a range extending fuel such as gasoline. The range extending fuel is generally considered to be less environmentally and economically friendly to use than the primary fuel source, so the vehicle control system gives preference to using the primary fuel if it's available. However, due to range limitations with the primary fuel source, the range extending fuel allows the vehicle to get many of the cost and environmental benefits of the primary fuel, while maintaining the full driving range of the range extending fuel source. For example, in the Chevy Volt, battery power from the electric grid can be cheaper and more environmentally sustainable than burning gasoline (depending on the electric generation source), but due to the trade offs between the range of a pure electric vehicle and its battery size, adding the range extending gasoline is considered by many to be good compromise to give the Chevy Volt a significantly greater driving range. How many benefits are derived from using the primary fuel however depend on how the vehicles are driven. For example, a first generation Chevy Volt will operate 100% on battery power from the electric grid for the first 60 km (37 miles), while the second generation Volt will operate on 100% battery power for the first 85 km (53 miles) when fully recharged between trips. However, if the same Chevy Volt is driven for hundreds of miles a day it will require significant gasoline as the battery will be quickly depleted. Using the gasoline engine to generate power for the motors, the economy ratings are 6.4 L/100 km (37 mpg‑US) and 5.6 L/100 km (42 mpg‑US) for the different generation models. Therefore, it is critical to understand the driving patterns of the average commuter to fully understand the impact these range extending vehicles will have in the real world.


...
Wikipedia

...