*** Welcome to piglix ***

Radium-223

Radium-223 chloride
Clinical data
Trade names Xofigo
AHFS/Drugs.com xofigo
Pregnancy
category
  • US: X (Contraindicated)
Routes of
administration
injection
ATC code
Legal status
Legal status
  • US: ℞-only
  • Experimental in most countries
Identifiers
CAS Number
ChemSpider
  • none
UNII
KEGG
ChEBI
Chemical and physical data
Formula 223RaCl2
Molar mass 296.91 g/mol
 NYesY (what is this?)  


Radium-223 (Ra-223, 223Ra) is an isotope of radium with an 11.4-day half-life, in contrast to the more common isotope radium-226, discovered by the Curies, which has a 1601-year half-life. The principal use of radium-223, as a radiopharmaceutical to treat metastatic cancers in bone, takes advantage of its chemical similarity to calcium, and the short range of the alpha radiation it emits.

Although radium-223 is formed naturally in trace amounts by the decay of uranium-235, it is generally made artificially, by exposing natural radium-226 to neutrons to produce radium-227, which decays with a 42-minute half-life to actinium-227. Actinium-227 (half-life 21.8 years) in turn decays via thorium-227 (half-life 18.7 days) to radium-223. This decay path makes it convenient to prepare radium-223 by "milking" it from an actinium-227 containing generator or "cow", similar to the moly cows widely used to prepare the medically important isotope technetium-99m.

The pharmaceutical product and medical use of radium-223 against skeletal metastases was invented by Roy H. Larsen, Gjermund Henriksen and Øyvind S. Bruland and has been developed by the former Norwegian company Algeta ASA, in a partnership with Bayer, under the trade name Xofigo (formerly Alpharadin), and is distributed as a solution containing radium-223 chloride (1100 kBq/ml), sodium chloride, and other ingredients for intravenous injection. Algeta ASA was later acquired by Bayer who is now the sole owner of Xofigo. The recommended regimen is six treatments of 55 kBq/kg (1.3 uCi per kg), repeated at 4-week intervals.

The use of radium-223 to treat metastatic bone cancer relies on the ability of alpha radiation from radium-223 and its short-lived decay products to kill cancer cells. Radium is preferentially absorbed by bone by virtue of its chemical similarity to calcium, with most radium-223 that is not taken up by the bone being cleared, primarily via the gut, and excreted. Although radium-223 and its decay products also emit beta and gamma radiation, over 95% of the decay energy is in the form of alpha radiation. Alpha radiation has very short range in tissues, around 2-10 cells, compared to beta or gamma radiation. This reduces damage to surrounding healthy tissues, producing an even more localized effect than the beta-emitter strontium-89, also used to treat bone cancer. Taking account of its preferential uptake by bone and the alpha particles' short range, radium-223 is estimated to give targeted osteogenic cells a radiation dose at least 8 fold higher than other non-targeted tissues


...
Wikipedia

...