*** Welcome to piglix ***

Radial turbine


A radial turbine is a turbine in which the flow of the working fluid is radial to the shaft. The difference between axial and radial turbines consists in the way the fluid flows through the components (compressor and turbine). Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly orientated perpendicular to the rotation axis, and it drives the turbine in the same way water drives a watermill. The result is less mechanical stress (and less thermal stress, in case of hot working fluids) which enables a radial turbine to be simpler, more robust, and more efficient (in a similar power range) when compared to axial turbines. When it comes to high power ranges (above 5 MW) the radial turbine is no longer competitive (due to heavy and expensive rotor) and the efficiency becomes similar to that of the axial turbines.

Compared to an axial flow turbine, a radial turbine can employ a relatively higher pressure ratio (≈4) per stage with lower flow rates. Thus these machines fall in the lower specific speed and power ranges. For high temperature applications rotor blade cooling in radial stages is not as easy as in axial turbine stages. Variable angle nozzle blades can give higher stage efficiencies in a radial turbine stage even at off-design point operation. In the family of hydro-turbines, Francis turbine is a very well-known IFR turbine which generates much larger power with a relatively large impeller.

Ninety degree inward-flow radial turbine stage

Velocity triangles for an inward-flow radial (IFR) turbine stage with cantilever blades

The radial and tangential components of the absolute velocity c2 are cr2 and cq2, respectively. The relative velocity of the flow and the peripheral speed of the rotor are w2 and u2 respectively. The air angle at the rotor blade entry is given by

The stagnation state of the gas at the nozzle entry is represented by point 01. The gas expands adiabatically in the nozzles from a pressure p1 to p2 with an increase in its velocity from c1 to c2. Since this is an energy transformation process, the stagnation enthalpy remains constant but the stagnation pressure decreases (p01 > p02) due to losses. The energy transfer accompanied by an energy transformation process occurs in the rotor.


...
Wikipedia

...