*** Welcome to piglix ***

Radeon R100

ATi Radeon 7000 Series
ATI Logo
Release date 2000-2001
Codename Rage 6C
Architecture Radeon R100
Fabrication process and transistors 30M 180nm (R100)
30M 180nm (RV100)
Cards
Entry-level 7000 VE, LE
Mid-range 7200 DDR, 7200 SDR
High-end VIVO, VIVO SE
7500 LE
Enthusiast 7500
API support
Direct3D Direct3D 7.0
OpenGL OpenGL 1.3 (T&L)
History
Predecessor Rage Series
Successor Radeon 8000 Series
Radeon R100-based chipsets
CPU supported Mobile Athlon XP (320M IGP)
Mobile Duron (320M IGP)
Pentium 4-M and mobile Pentium 4 (340M IGP, 7000 IGP)
Socket supported Socket A, Socket 563 (AMD)
Socket 478 (Intel)
Desktop / mobile chipsets
Performance segment 7000 IGP
Mainstream segment 320 IGP, 320M IGP
340 IGP, 340M IGP
Value segment 320 IGP, 320M IGP (AMD)
340 IGP, 340M IGP (Intel)
Miscellaneous
Release date(s) March 13, 2002 (300/300M IGP)
March 13, 2003 (7000 IGP)
Successor Radeon 8500/9000/9100 IGP

The Radeon R100 is the first generation of Radeon graphics chips from ATI Technologies. The line features 3D acceleration based upon Direct3D 7.0 and OpenGL 1.3, and all but the entry-level versions offloading host geometry calculations to a hardware transform and lighting (T&L) engine, a major improvement in features and performance compared to the preceding Rage design. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs. "R100" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

The first-generation Radeon GPU was launched in 2000, and was initially code-named Rage 6 (later R100), as the successor to ATI's aging Rage 128 Pro which was unable to compete with the GeForce 256. The R100 was built on a 180 nm semiconductor manufacturing process. Like the GeForce, the Radeon R100 featured a hardware transform and lighting (T&L) engine to perform geometry calculations, freeing up the host computer's CPU.

With respect to the 3D hardware within Radeon, the processor can write 2 pixels to the framebuffer and sample 3 texture maps per pixel per clock. This is commonly referred to as a 2×3 configuration. Of Radeon's competitors, the 3dfx Voodoo 5 5500 is a 4×1 design and the GeForce2 GTS is 4×2. Unfortunately, the third texture unit did not get much use in games during the card's lifetime because software was not frequently performing more than dual texturing.

Radeon also introduced a new memory bandwidth optimization and overdraw reduction technology called HyperZ. It basically improves the overall efficiency of the 3D rendering processes. Consisting of 3 different functions, it allows the Radeon to perform very competitively compared to competing 2 and 4 pipeline designs.


...
Wikipedia

...