*** Welcome to piglix ***

Radeon HD 4000 Series

ATI Radeon HD 4000 Series
Release date June 16, 2008
Codename Radeon R700 series
M9x series
Architecture TeraScale 1
Fabrication process and transistors
  • 242M 55 nm (RV710)
  • 514M 55 nm (RV730)
  • 826M 40 nm (RV740)
  • 956M 55 nm (RV770)
  • 959M 55 nm (RV790)
Cards
Entry-level 4350, 4550, 4570
Mid-range 4650, 4670, 4730, 4750, 4770
High-end 4830, 4850, 4860, 4870
Enthusiast 4890, 4850X2, 4870X2
API support
Direct3D Direct3D 10.1
Shader Model 4.1
OpenCL OpenCL 1.1
OpenGL OpenGL 3.3
History
Predecessor Radeon HD 3000 Series
Successor Radeon HD 5000 Series

The Radeon R700 is the engineering codename for a graphics processing unit series developed by Advanced Micro Devices under the ATI brand name. The foundation chip, codenamed RV770, was announced and demonstrated on June 16, 2008 as part of the FireStream 9250 and Cinema 2.0 initiative launch media event, with official release of the Radeon HD 4800 series on June 25, 2008. Other variants include enthusiast-oriented RV790, mainstream product RV730, RV740 and entry-level RV710.

Its direct competition was nVidia's GeForce 200 series, which launched in the same month.

This article is about all products under the brand "Radeon HD 4000 Series". All products implement TeraScale 1 microarchitecture.

The RV770 extends the R600's unified shader architecture by increasing the stream processing unit count to 800 units (up from 320 units in the R600), which are grouped into 10 SIMD cores composed of 16 shader cores containing 4 FP MADD/DP ALUs and 1 MADD/transcendental ALU. The RV770 retains the R600's 4 Quad ROP cluster count, however, they are faster and now have dedicated hardware-based AA resolve in addition to the shader-based resolve of the R600 architecture. The RV770 also has 10 texture units, each of which can handle 4 addresses, 16 FP32 samples, and 4 FP32 filtering functions per clock cycle.

RV770 features a 256-bit memory controller and is the first GPU to support GDDR5 memory, which runs at 900 MHz giving an effective transfer rate of 3.6 GHz and memory bandwidth of up to 115 GB/s. The internal ring bus from the R520 and R600 has been replaced by the combination of a crossbar and an internal hub.

The SIP block UVD 2.0-2.2 implemented on the dies of all Radeon HD 4000 Series Desktop gpus, 48xx series is using uvd 2.0, 47xx-46xx-45xx-43xx series is using uvd 2.2.


...
Wikipedia

...