In mathematics, the RSA numbers are a set of large semiprimes (numbers with exactly two prime factors) that are part of the RSA Factoring Challenge. The challenge was to find the prime factors but it was declared inactive in 2007. It was created by RSA Laboratories in March 1991 to encourage research into computational number theory and the practical difficulty of factoring large integers.
RSA Laboratories published a number of semiprimes with 100 to 617 decimal digits. Cash prizes of varying size were offered for factorization of some of them. The smallest RSA number was factored in a few days. Most of the numbers have still not been factored and many of them are expected to remain unfactored for many years to come. As of May 2016[update], 19 of the 54 listed numbers have been factored: the 18 smallest from RSA-100 to RSA-220, plus RSA-768.
The RSA challenge officially ended in 2007 but people are still attempting to find the factorizations. According to RSA Laboratories, "Now that the industry has a considerably more advanced understanding of the cryptanalytic strength of common symmetric-key and public-key algorithms, these challenges are no longer active." Some of the smaller prizes had been awarded at the time. The remaining prizes were retracted.
The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme. The numbers are listed in increasing order below.
RSA-100 has 100 decimal digits (330 bits). Its factorization was announced on April 1, 1991 by Arjen K. Lenstra. Reportedly, the factorization took a few days using the multiple-polynomial quadratic sieve algorithm on a MasPar parallel computer.