Alternative names | RAVE |
---|---|
Survey type | astronomical survey |
Observations | UK Schmidt Telescope |
Wavelength | 850 nanometre |
Website | www |
[]
|
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-metre UK Schmidt Telescope of the Australian Astronomical Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz Institute for Astrophysics Potsdam (AIP).
As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars.
On April 5, 2013 RAVE concluded its phase of data taking. In an almost ten year observing campaign, a total of 574,630 spectra have been obtained on 483,330 individual stars by a small team of AAO observers, with other observers making occasional visits from RAVE participating institutions.
RAVE is an observational program in the field of Near Field Cosmology which exploits our position inside the Milky Way to study its formation and evolution in greater detail than is possible for other galaxies. RAVE focuses on obtaining stellar radial velocities to study the motions of stars in the Milky Way's thin and thick disk and stellar halo. The vast majority of stars in our Galaxy have no velocity measurements, and particularly no time-consuming radial velocity measurements. RAVE utilizes fiber optics to perform multiple, simultaneous spectroscopy on up to 150 stars in a single observation. In this way it can obtain a representative sample of the nearby stars in our Galaxy which are all around, over a wide area of the sky.