*** Welcome to piglix ***

Quotient monoid

Group-like structures
Totality Associativity Identity Invertibility Commutativity
Semicategory Unneeded Required Unneeded Unneeded Unneeded
Category Unneeded Required Required Unneeded Unneeded
Groupoid Unneeded Required Required Required Unneeded
Magma Required Unneeded Unneeded Unneeded Unneeded
Quasigroup Required Unneeded Unneeded Required Unneeded
Loop Required Unneeded Required Required Unneeded
Semigroup Required Required Unneeded Unneeded Unneeded
Monoid Required Required Required Unneeded Unneeded
Group Required Required Required Required Unneeded
Abelian group Required Required Required Required Required
Closure, which is used in many sources, is an equivalent axiom to totality, though defined differently.

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. The binary operation of a semigroup is most often denoted multiplicatively: x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·yz = x·(y·z) for all x, y and z in the semigroup.

The name "semigroup" originates in the fact that a semigroup generalizes a group by preserving only associativity and closure under the binary operation from the axioms defining a group. From the opposite point of view (of adding rather than removing axioms), a semigroup is an associative magma. As in the case of groups or magmas, the semigroup operation need not be commutative, so x·y is not necessarily equal to y·x; a typical example of associative but non-commutative operation is matrix multiplication. If the semigroup operation is commutative, then the semigroup is called a commutative semigroup or (less often than in the analogous case of groups) it may be called an abelian semigroup.

A monoid is an algebraic structure intermediate between groups and semigroups, and is a semigroup having an identity element, thus obeying all but one of the axioms of a group; existence of inverses is not required of a monoid. A natural example is strings with concatenation as the binary operation, and the empty string as the identity element. Restricting to non-empty strings gives an example of a semigroup that is not a monoid. Positive integers with addition form a commutative semigroup that is not a monoid, whereas the non-negative integers do form a monoid. A semigroup without an identity element can be easily turned into a monoid by just adding an identity element. Consequently, monoids are studied in the theory of semigroups rather than in group theory. Semigroups should not be confused with quasigroups, which are a generalization of groups in a different direction; the operation in a quasigroup need not be associative but quasigroups preserve from groups a notion of division. Division in semigroups (or in monoids) is not possible in general.


...
Wikipedia

...