A quintuple bond in chemistry is an unusual type of chemical bond, first reported in 2005 for a dichromium compound. Single bonds, double bonds, and triple bonds are commonplace in chemistry. Quadruple bonds are rarer but are currently known only among the transition metals, especially for Cr, Mo, W, and Re, e.g. [Mo2Cl8]4− and [Re2Cl8]2−. In a quintuple bond, ten electrons participate in bonding between the two metal centers, allocated as σ2π4δ4.
In some cases of high-order bonds between metal atoms, the metal-metal bonding is facilitated by ligands that link the two metal centers and reduce the interatomic distance. By contrast, the chromium dimer with quintuple bonding is stabilized by a bulky terphenyl (2,6-[(2,6-diisopropyl)phenyl]phenyl) ligands. The species is stable up to 200 °C. The chromium–chromium quintuple bond has been analyzed with multireference ab initio and DFT methods, which were also used to elucidate the role of the terphenyl ligand, in which the flanking aryls were shown to interact very weakly with the chromium atoms, causing only a small weakening of the quintuple bond. A 2007 theoretical study identified two global minima for quintuple bonded RMMR compounds: a trans-bent molecular geometry and surprisingly another trans-bent geometry with the R substituent in a bridging position.
In 2005, a quintuple bond was postulated to exist in the hypothetical uranium molecule U2 based on computational chemistry. Diuranium compounds are rare, but do exist; for example, the U
2Cl2−
8 anion.