The Quine–McCluskey algorithm (or the method of prime implicants) is a method used for minimization of boolean functions that was developed by W.V. Quine and extended by Edward J. McCluskey. It is functionally identical to Karnaugh mapping, but the tabular form makes it more efficient for use in computer algorithms, and it also gives a deterministic way to check that the minimal form of a Boolean function has been reached. It is sometimes referred to as the tabulation method.
The method involves two steps:
Although more practical than Karnaugh mapping when dealing with more than four variables, the Quine–McCluskey algorithm also has a limited range of use since the problem it solves is NP-hard: the runtime of the Quine–McCluskey algorithm grows exponentially with the number of variables. It can be shown that for a function of n variables the upper bound on the number of prime implicants is 3nln(n). If n = 32 there may be over 6.5 * 1015 prime implicants. Functions with a large number of variables have to be minimized with potentially non-optimal heuristic methods, of which the Espresso heuristic logic minimizer is the de facto standard.
Minimizing an arbitrary function:
This expression says that the output function f will be 1 for the minterms 4,8,10,11,12 and 15 (denoted by the 'm' term). But it also says that we don't care about the output for 9 and 14 combinations (denoted by the 'd' term). ('x' stands for don't care).
One can easily form the canonical sum of products expression from this table, simply by summing the minterms (leaving out don't-care terms) where the function evaluates to one: