In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1). Although this definition includes hyperkähler manifolds, these are often excluded from the definition of a quaternion-Kähler manifold by imposing the condition that the scalar curvature is nonzero, or that the holonomy group is equal to Sp(n)·Sp(1). The definition introduced by Edmond Bonan in 1965, uses a 3-dimensional subbundle H of End(TM) of endomorphisms of the tangent bundle to a Riemannian M, that in 1976 Stefano Marchiafava and Giuliano Romani called Il fibrato di Bonan . For M to be quaternion-Kähler, H should be preserved by the Levi-Civita connection and pointwise isomorphic to the imaginary quaternions which act on TM preserving the metric. Simultaneously, in 1965, Edmond Bonan and Vivian Yoh Kraines constructed the parallel 4-form. It was not until 1982 that Edmond Bonan proved an outstanding result : the analogue of hard Lefschetz theorem for compact Sp(n)·Sp(1)-manifold.
Quaternion-Kähler manifolds appear in Berger's list of Riemannian holonomies as the only manifolds of special holonomy with non-zero Ricci curvature. In fact, these manifolds are Einstein. If an Einstein constant of a quaternion-Kähler manifold is zero, it is hyperkähler. This case is often excluded from the definition. That is, quaternion-Kähler is defined as one with holonomy reduced to Sp(n)·Sp(1) and with non-zero Ricci curvature (which is constant).
Quaternion-Kähler manifolds divide naturally into those with positive and negative Ricci curvature.
There are no known examples of compact quaternion-Kähler manifolds which are not locally symmetric or hyperkähler. Symmetric quaternion-Kähler manifolds are also known as Wolf spaces. For any simple Lie group G, there is a unique Wolf space G/K obtained as a quotient of G by a subgroup