In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of H⊗H{\displaystyle H\otimes H} such that
where R12=ϕ12(R){\displaystyle R_{12}=\phi _{12}(R)}, R13=ϕ13(R){\displaystyle R_{13}=\phi _{13}(R)}, and R23=ϕ23(R){\displaystyle R_{23}=\phi _{23}(R)}, where ϕ12:H⊗H→H⊗H⊗H{\displaystyle \phi _{12}:H\otimes H\to H\otimes H\otimes H}, ϕ13:H⊗H→H⊗H⊗H{\displaystyle \phi _{13}:H\otimes H\to H\otimes H\otimes H}, and ϕ23:H⊗H→H⊗H⊗H{\displaystyle \phi _{23}:H\otimes H\to H\otimes H\otimes H}, are algebra morphisms determined by