*** Welcome to piglix ***

Quasi-phase-matching


Quasi-phase-matching is a technique in nonlinear optics which allows a positive net flow of energy from the pump frequency to the signal and idler frequencies by creating a periodic structure in the nonlinear medium. Momentum is conserved, as is necessary for phase-matching, through an additional momentum contribution corresponding to the wavevector of the periodic structure. Consequently, in principle any three-wave mixing process that satisfies energy conservation can be phase-matched. For example, all the optical frequencies involved can be collinear, can have the same polarization, and travel through the medium in arbitrary directions. This allows one to use the largest nonlinear coefficient of the material in the nonlinear interaction.

Quasi-phase-matching ensures that there is positive energy flow from the pump frequency to signal and idler frequencies even though all the frequencies involved are not phase locked with each other. Energy will always flow from pump to signal as long as the phase between the two optical waves is less than 180 degrees. Beyond 180 degrees, energy flows back from the signal to the pump frequencies. The coherence length is the length of the medium in which the phase of pump and the sum of idler and signal frequencies are 180 degrees from each other. At each coherence length the crystal axes are flipped which allows the energy to continue to positively flow from the pump to the signal and idler frequencies.

The most commonly used technique for creating quasi-phase-matched crystals has been periodic poling. More recently, continuous phase control over the local nonlinearity was achieved using nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability.

In nonlinear optics, the generation of other frequencies is the result of the nonlinear polarization response of the crystal due to fundamental pump frequency. When the crystal axis is flipped, the polarization wave is shifted by 180°, thus ensuring that there is a positive energy flow to the signal and idler beam. In the case of sum-frequency generation, polarization equation can be expressed by

where is the nonlinear susceptibility coefficient, in which the sign of the coefficient is flipped when the crystal axis is flipped, and represents the imaginary unit.


...
Wikipedia

...