The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr. Their debates are remembered because of their importance to the philosophy of science. An account of the debates was written by Bohr in an article titled "Discussions with Einstein on Epistemological Problems in Atomic Physics". Despite their differences of opinion regarding quantum mechanics, Bohr and Einstein had a mutual admiration that was to last the rest of their lives.
The debates represent one of the highest points of scientific research in the first half of the twentieth century because it called attention to an element of quantum theory, quantum non-locality, which is central to our modern understanding of the physical world. The consensus view of professional physicists has been that Bohr proved victorious in his defense of quantum theory, and definitively established the fundamental probabilistic character of quantum measurement.
Einstein was the first physicist to say that Planck's discovery of the quantum (h) would require a rewriting of the laws of physics. To support his point, in 1905 he proposed that light sometimes acts as a particle which he called a light quantum (see photon and wave–particle duality). Bohr was one of the most vocal opponents of the photon idea and did not openly embrace it until 1925. The photon appealed to Einstein because he saw it as a physical reality (although a confusing one) behind the numbers. Bohr disliked it because it made the choice of mathematical solution arbitrary. He did not like a scientist's having to choose between equations.
1913 brought the Bohr model of the hydrogen atom, which made use of the quantum to explain the atomic spectrum. Einstein was at first skeptical, but quickly changed his mind and admitted his shift in mindset.
The quantum revolution of the mid-1920s occurred under the direction of both Einstein and Bohr, and their post-revolutionary debates were about making sense of the change. The shocks for Einstein began in 1925 when Werner Heisenberg introduced matrix equations that removed the Newtonian elements of space and time from any underlying reality. The next shock came in 1926 when Max Born proposed that mechanics were to be understood as a probability without any causal explanation.