*** Welcome to piglix ***

Quantum angle


In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

A Hermitian form in (the vector space) Cn+1 defines a unitary subgroup U(n+1) in GL(n+1,C). A Fubini–Study metric is determined up to homothety (overall scaling) by invariance under such a U(n+1) action; thus it is homogeneous. Equipped with a Fubini–Study metric, CPn is a symmetric space. The particular normalization on the metric depends on the application. In Riemannian geometry, one uses a normalization so that the Fubini–Study metric simply relates to the standard metric on the (2n+1)-sphere. In algebraic geometry, one uses a normalization making CPn a Hodge manifold.

The Fubini–Study metric arises naturally in the quotient space construction of complex projective space.

Specifically, one may define CPn to be the space consisting of all complex lines in Cn+1, i.e., the quotient of Cn+1\{0} by the equivalence relation relating all complex multiples of each point together. This agrees with the quotient by the diagonal group action of the multiplicative group C* = C \ {0}:


...
Wikipedia

...