*** Welcome to piglix ***

Quantum Field Theory


In theoretical physics, quantum field theory (QFT) is the theoretical framework for constructing quantum mechanical models of subatomic particles in particle physics and quasiparticles in condensed matter physics. QFT treats particles as excited states of the underlying , so these are called field quanta.

In quantum field theory, quantum mechanical interactions among particles are described by interaction terms among the corresponding underlying quantum fields. These interactions are conveniently visualized by Feynman diagrams, which are a formal tool of relativistically covariant perturbation theory, serving to evaluate particle processes.

Even though QFT is an unavoidable consequence of the reconciliation of quantum mechanics with special relativity (Weinberg (2005)), historically, it emerged in the 1920s with the quantization of the electromagnetic field (the quantization being based on an analogy of the eigenmode expansion of a vibrating string with fixed endpoints).

The first achievement of quantum field theory, namely quantum electrodynamics (QED), is “still the paradigmatic example of a successful quantum field theory” ( Weinberg (2005)). Ordinarily, quantum mechanics (QM) cannot give an account of photons which constitute the prime case of relativistic ‘particles’. Since photons have rest mass zero, and correspondingly travel in the vacuum at the speed c, a non-relativistic theory such as ordinary QM cannot give even an approximate description. Photons are implicit in the emission and absorption processes which have to be postulated; for instance, when one of an atom's electrons makes a transition between energy levels. The formalism of QFT is needed for an explicit description of photons. In fact most topics in the early development of quantum theory (the so-called old quantum theory, 1900–25) were related to the interaction of radiation and matter and thus should be treated by quantum field theoretical methods. However, quantum mechanics as formulated by Dirac, Heisenberg, and Schrödinger in 1926–27 started from atomic spectra and did not focus much on problems of radiation.


...
Wikipedia

...