In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was predicted by Lars Onsager in 1947 in connection with superfluid helium. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov.
Quantum vortices are observed experimentally in Type-II superconductors, liquid helium, and atomic gases (see Bose–Einstein condensate), as well as in photon fields (optical vortex) and exciton-polariton superfluids.
In a superfluid, a quantum vortex “carries” quantized angular momentum, thus allowing the superfluid to rotate; in a superconductor, the vortex carries quantized magnetic flux.
In a superfluid, a quantum vortex is a hole with the superfluid circulating around the vortex axis; the inside of the vortex may contain excited particles, air, vacuum, etc. The thickness of the vortex depends on a variety of factors; in liquid helium, the thickness is of the order of a few Angstroms.