A quadrant is an instrument that is used to measure angles up to 90°. It was originally proposed by Ptolemy as a better kind of astrolabe. Several different variations of the instrument were later produced by medieval Muslim astronomers.
There are several types of quadrants:
They can also be classified as
The geometric quadrant is a quarter-circle panel usually of wood or brass. Markings on the surface might be printed on paper and pasted to the wood or painted directly on the surface. Brass instruments had their markings scribed directly into the brass.
For marine navigation, the earliest examples were found around 1460. They were not graduated in degrees but rather had the latitudes of the most common destinations directly scribed on the . When in use, the navigator would sail north or south until the quadrant indicated he was at the destination's latitude, turn in the direction of the destination and sail to the destination maintaining a course of constant latitude. After 1480, more of the instruments were made with limbs graduated in degrees.
Along one edge there were two sights forming an alidade. A plumb bob was suspended by a line from the centre of the arc at the top.
In order to measure the altitude of a star, the observer would view the star through the sights and hold the quadrant so that the plane of the instrument was vertical. The plumb bob was allowed to hang vertical and the line indicated the reading on the arc's graduations. It was not uncommon for a second person to take the reading while the first concentrated on observing and holding the instrument in proper position.
The accuracy of the instrument was limited by its size and by the effect the wind or observer's motion would have on the plumb bob. For navigators on the deck of a moving ship, these limitations could be difficult to overcome.
In order to avoid staring into the sun to measure its altitude, navigators could hold the instrument in front of them with the sun to their side. By having the sunward sighting vane cast its shadow on the lower sighting vane, it was possible to align the instrument to the sun. Care would have to be taken to ensure that the altitude of the centre of the sun was determined. This could be done by averaging the elevations of the upper and lower umbra in the shadow.