Pythonomorphs Temporal range: Middle Jurassic - Holocene, 170–0 Ma |
|
---|---|
Skull and jaws of Platecarpus, Peabody Museum of Natural History | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Reptilia |
Order: | Squamata |
Suborder: | Anguimorpha |
Clade: |
Pythonomorpha Cope, 1869 |
Subgroups | |
Pythonomorpha was originally proposed by paleontologist Edward Drinker Cope (1869) as a reptilian order comprising snakes and mosasaurs. The etymology of the term Pythonomorpha comes from the Greek Python (a monstrous snake from Greek mythology) and morphe ("form"), and refers to the generally serpentine body plan of members of the group. Cope wrote, "In the mosasauroids, we almost realize the fictions of snake-like dragons and sea-serpents, in which men have been ever prone to indulge. On account of the ophidian part of their affinities, I have called this order Pythonomorpha."
However, the category was rejected by most 20th-century herpetologists and paleontologists, who sought, instead, to demonstrate a close relationship between mosasaurs and varanid (monitor) lizards and who generally considered snakes to have evolved from terrestrial, burrowing lizards (see, for example, Russell, 1967). Cope's Pythonomorpha was later resurrected by a number of paleontologists (Lee, 1997; Caldwell et Lee, 1997) who have conducted cladistic analyses that seem to show that snakes and mosasaurs may be more closely related to one another than either is to the varanid lizards, and that snakes more likely arose from aquatic ancestors. As redefined by Lee (1997), the monophyletic Pythonomorpha consists of "The most recent common ancestor of mosasauroids and snakes, and all its descendants." This would include the aigialosaurs, dolichosaurs, coniasaurs, mosasaurs, and all snakes. Lee (1997) was able to show no less than 38 synapomorphies supporting Pythonomorpha.