A Pythagorean prime is a prime number of the form 4n + 1. Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares.
Equivalently, by the Pythagorean theorem, they are the odd prime numbers p for which √p is the length of the hypotenuse of a right triangle with integer legs, and they are also the prime numbers p for which p itself is the hypotenuse of a Pythagorean triangle. For instance, the number 5 is a Pythagorean prime; √5 is the hypotenuse of a right triangle with legs 1 and 2, and 5 itself is the hypotenuse of a right triangle with legs 3 and 4.
The first few Pythagorean primes are
By Dirichlet's theorem on arithmetic progressions, this sequence is infinite. More strongly, for each n, the numbers of Pythagorean and non-Pythagorean primes up to n are approximately equal. However, the number of Pythagorean primes up to n is frequently somewhat smaller than the number of non-Pythagorean primes; this phenomenon is known as Chebyshev's bias. For example, the only values of n up to 600000 for which there are more Pythagorean than non-Pythagorean odd primes are 26861 and 26862.
The sum of one odd square and one even square is congruent to 1 mod 4, but there exist composite numbers such as 21 that are 1 mod 4 and yet cannot be represented as sums of two squares. Fermat's theorem on sums of two squares states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent to 1 mod 4. The representation of each such number is unique, up to the ordering of the two squares.
By using the Pythagorean theorem, this representation can be interpreted geometrically: the Pythagorean primes are exactly the odd prime numbers p such that there exists a right triangle, with integer legs, whose hypotenuse has length √p. They are also exactly the prime numbers p such that there exists a right triangle with integer sides whose hypotenuse has length p. For, if the triangle with legs x and y has hypotenuse length √p (with x > y), then the triangle with legs x2 − y2 and 2xy has hypotenuse length p.