Pyrosequencing is a method of DNA sequencing (determining the order of nucleotides in DNA) based on the "sequencing by synthesis" principle. It differs from Sanger sequencing, in that it relies on the detection of pyrophosphate release on nucleotide incorporation, rather than chain termination with dideoxynucleotides. The technique was developed by Mostafa Ronaghi and Pål Nyrén at the Royal Institute of Technology in Stockholm in 1996. The desired DNA sequence is able to be determined by light emitted upon incorporation of the next complementary nucleotide by the fact that only one out of four of the possible A/T/C/G nucleotides are added and available at a time so that only one letter can be incorporated on the single stranded template (which is the sequence to be determined). The intensity of the light determines if there are more than one of these "letters" in a row. The previous nucleotide letter (one out of four possible dNTP) is degraded before the next nucleotide letter is added for synthesis: allowing for the possible revealing of the next nucleotide(s) via the resulting intensity of light (if the nucleotide added was the next complementary letter in the sequence). This process is repeated with each of the four letters until the DNA sequence of the single stranded template is determined.
"Sequencing by synthesis" involves taking a single strand of the DNA to be sequenced and then synthesizing its complementary strand enzymatically. The pyrosequencing method is based on detecting the activity of DNA polymerase (a DNA synthesizing enzyme) with another chemoluminescent enzyme. Essentially, the method allows sequencing of a single strand of DNA by synthesizing the complementary strand along it, one base pair at a time, and detecting which base was actually added at each step. The template DNA is immobile, and solutions of A, C, G, and T nucleotides are sequentially added and removed from the reaction. Light is produced only when the nucleotide solution complements the first unpaired base of the template. The sequence of solutions which produce chemiluminescent signals allows the determination of the sequence of the template.