*** Welcome to piglix ***

Pyroelectric crystal


Pyroelectric crystals are crystals that generate electricity when heated. It is similar to piezoelectricity.

Crystal structures can be divided into 32 classes, or point groups, according to the number of rotational axes and reflection planes they exhibit that leave the crystal structure unchanged. Twenty-one of the 32 crystal classes lack a center of symmetry, and of these, 20 are piezoelectric. Of these 20 piezoelectric crystal classes, 10 of them are pyroelectric (polar). Any material develops a dielectric polarization when an electric field is applied, but a substance which has such a natural charge separation even in the absence of a field is called a polar material. Whether or not a material is polar is determined solely by its crystal structure.

Under normal circumstances, even polar materials do not display a net dipole moment. As a consequence there are no electric dipole equivalents of bar magnets because the intrinsic dipole moment is neutralized by "free" electric charge that builds up on the surface by internal conduction or from the ambient atmosphere. Polar crystals only reveal their nature when perturbed in some fashion that momentarily upsets the balance with the compensating surface charge.

Electret is the electrical equivalent of a permanent magnet.

Spontaneous polarization is temperature dependent, so a good perturbation probe is a change in temperature which induces a flow of charge to and from the surfaces. This is the pyroelectric effect. All polar crystals are pyroelectric, so the 10 polar crystal classes are sometimes referred to as the pyroelectric classes. The property of pyroelectric crystal is to measure change in net polarization (a vector) proportional to a change in temperature. The total pyroelectric coefficient measured at constant stress is the sum of the pyroelectric coefficients at constant strain (primary pyroelectric effect) and the piezoelectric contribution from thermal expansion (secondary pyroelectric effect). Pyroelectric materials can be used as infrared and millimeter wavelength detectors.

Ferroelectrics are materials which possess an electric polarization in the absence of an externally applied electric field such that the polarization can be reversed if the electric field is reversed. Normally materials are very nearly electrically neutral on the macroscopic level. However, the positive and negative charges which make up the material are not necessarily distributed in a symmetric manner. If the sum of charge times distance for all elements of the basic cell does not equal zero the cell will have an electric dipole moment which is a vector quantity. The dipole moment per unit volume is defined as the dielectric polarization. Since all ferroelectric materials exhibit a spontaneous polarization, all ferroelectric materials are also pyroelectric (but not all pyroelectric materials are ferroelectric).


...
Wikipedia

...