*** Welcome to piglix ***

Pyranometer


A pyranometer is a type of actinometer used for measuring solar irradiance on a planar surface and it is designed to measure the solar radiation flux density (W/m2) from the hemisphere above within a wavelength range 0.3 μm to 3 μm. The name pyranometer stems from the Greek words πῦρ (pyr), meaning "fire", and ἄνω (ano), meaning "above, sky".

A typical pyranometer does not require any power to operate.

The solar radiation spectrum that reach earth surface extends its wavelength approximately from 300 nm to 2800 nm. Depending on the type of pyranometer used, irradiance measurements with different degrees of spectral sensitivity will be obtained.

To make a measurement of irradiance, it is required by definition that the response to “beam” radiation varies with the cosine of the angle of incidence. This ensures a full response when the solar radiation hits the sensor perpendicularly (normal to the surface, sun at zenith, 0° angle of incidence), zero response when the sun is at the horizon (90° angle of incidence, 90° zenith angle), and 0.5 at a 60° angle of incidence. It follows that a pyranometer should have a so-called “directional response” or “cosine response” close to the ideal cosine characteristic.

Following the classifications and definitions noted in the ISO 9060, three types of pyranometers can be recognized and grouped in two different technologies: thermopile technology and silicon semiconductor technology.

The light sensitivity, known as 'spectral response', depends on the type of pyranometer. The figure to the right shows the spectral responses of the three types of pyranometer in relation to the Solar Radiation Spectrum. The Solar Radiation Spectrum represents the spectrum of sunlight that reaches the Earth’s surface at sea level, at midday with A.M. (air mass) = 1.5.
The latitude and altitude influence this spectrum. The spectrum is influenced also by aerosol and pollution.

A thermopile pyranometer is a sensor based on thermopiles designed to measure the broadband of the solar radiation flux density from a 180° field of view angle. A thermopile pyranometer thus usually measures 300 to 2800 nm with a largely flat spectral sensitivity (see the Spectral Response graph) The first generation of thermopile pyranometers had the active part of the sensor equally divided in black and white sectors. Irradiation was calculated from the differential measure between the temperature of the black sectors, exposed to the sun, and the temperature of the white sectors, sectors not exposed to the sun or better said in the shades.


...
Wikipedia

...