*** Welcome to piglix ***

Pure submodule


In mathematics, especially in the field of module theory, the concept of pure submodule provides a generalization of direct summand, a type of particularly well-behaved piece of a module. Pure modules are complementary to flat modules and generalize Prüfer's notion of pure subgroups. While flat modules are those modules which leave short exact sequences exact after tensoring, a pure submodule defines a short exact sequence that remains exact after tensoring with any module. Similarly a flat module is a direct limit of projective modules, and a pure submodule defines a short exact sequence which is a direct limit of split exact sequences, each defined by a direct summand.

Let R be a ring, and let M, P be modules over R. If i: PM is injective then P is a pure submodule of M if, for any R-module X, the natural induced map on tensor products i⊗idX:PXMX is injective.

Analogously, a short exact sequence

of R-modules is pure exact if the sequence stays exact when tensored with any R-module X. This is equivalent to saying that f(A) is a pure submodule of B.

Purity can also be expressed element-wise; it is really a statement about the solvability of certain systems of linear equations. Specifically, P is pure in M if and only if the following condition holds: for any m-by-n matrix (aij) with entries in R, and any set y1,...,ym of elements of P, if there exist elements x1,...,xnin M such that


...
Wikipedia

...